About Technology

About Technology

Current situation
  • The efficacy of a lithium-ion battery (LIB) hinges significantly on the composition of its anode material.
  • Presently, graphite stands as the predominant commercial choice for anodes, albeit constrained by its modest capacity.
  • Silicon, emerging as a frontrunner, presents a promising alternative for the next evolution of lithium-ion batteries, boasting a theoretical specific capacity of 4212 mAh/g—dramatically surpassing graphite's 372 mAh/g.
  • However, silicon faces the challenge of volumetric expansion ranging from 3–5 times during lithiation–delithiation cycles.
  • This induces swelling, leading to fissures in the anode material and a breakdown in contact with the current collector. Researchers globally are exploring diverse methodologies to optimise the efficiency of anodes founded on nano-silicon
Rectangle 10
Rectangle 11
Current problems with silicon
Current problems with silicon

The mechanisms of LIB degradation are complex and depend on several factors, the main of which is the agglomeration of silicon nanoparticles and its volumetric changes, leading to loss of contact between silicon nanoparticles and carbon material, which leads to degradation of LIB during cycling. The picture shows how silicon is unevenly distributed in the carbon material and forms agglomerates up to 300 nm in size. 

01.

This sophisticated procedure induces rapid exfoliation of intercalates and the simultaneous formation of multi-layered graphene. Through energy release and subsequent temperature surges, essential elements undergo thermal decomposition, yielding nano-sized silicon particles that seamlessly integrate with graphene layers.

02.

This nuanced interplay of forces orchestrates the simultaneous exfoliation and the creation of silicon-carbon nano-composites. Meticulous control of precursor selection, gas mixture composition, and pressure conditions enables the crafting of nano-composites with precision, defining size, structure, and silicon nanoparticle content throughout the material.

03.

Our advanced process, executed using state-of-the-art technology, achieves an impressive 100% yield of the target product at remarkable speed, revolutionising the landscape of nano-composite synthesis.

The Adianano Nanocomposite Synthesis method boasts numerous advantages:
01. Homogeneous Distribution

Silicon nanoparticles are uniformly dispersed within the layers of multi-layered graphene, eliminating the risk of agglomeration.

02. Versatility in Concentration

Ranging from 5 to 80%, our method allows for the synthesis of silicon-carbon composites tailored to specific anode requirements for lithium-ion batteries.

03. Efficiency and Speed

Operating in a one-stage process, our method is swift and ensures a 100% yield, simplifying the production technology and enhancing overall productivity.

04. Simplicity

This technological leap transforms the landscape of nanocomposite synthesis, simplifying the production of tailored compositions for lithium-ion batteries and paving the way for enhanced energy storage solutions on a large scale.

LV_ID_EU_logo_ansamblis_ERAF_RGB_edited_

SIA “Adianano”, 03.04.2020. noslēdza līgumu Nr. IZ-L-2020/102 ar Latvijas Investīciju un attīstības aģentūru par atbalstu dalībai izstādēs un konferencēs, kā arī tiešo vizīšu pie potenciālā investora vai sadarbības partnera ārvalstīs nodrošināšanai Eiropas Reģionālās attīstības fonda projektā „Tehnoloģiju pārneses programma” (projekta identifikācijas numurs 1.2.1.2/16/I/001)

SIA “Adianano”, Veikts projekts ar numuru VP-PI-2021/79, kura galvenais uzdevums bija izpētīt kompozītmateriālu uz nano-silīcija bāzes uzvedību litija jonu akumulatori.

Frame 1

Adianano PL SP. z o.o. realizuje projekt: "Krzemowe baterie litowo-jonowe nowej generacji" realizowany w ramach powierzenia grantu zgodnie z Projektem: „GT Technologies”. Cel projektu: Określ prawidłowy skład nanokrzemu@grafenu i przetestuj materiał w akumulatorach litowo-jonowych. Dofinansowanie projektu grantowego: 902 240,00 PLN